博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ACM POJ 2109 Power of Cryptography
阅读量:6433 次
发布时间:2019-06-23

本文共 1404 字,大约阅读时间需要 4 分钟。

Power of Cryptography
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 10904 Accepted: 5626

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest.
This problem involves the efficient computation of integer roots of numbers.
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n
th. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10
101 and there exists an integer k, 1<=k<=10
9 such that k
n = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 163 277 4357186184021382204544

Sample Output

431234

Source

 
 
题目分析:求一个数的n次幂等于p,n、p均给定
所用算法:注意double的精度约为1^-300-1^300,注意神奇的pow函数
 
 
#include
#include
int main() {
double n,p; while(scanf("%lf%lf",&n,&p)!=EOF) {
printf("%.0f\n",pow(p,1/n)); } return 0; }

转载地址:http://nxtga.baihongyu.com/

你可能感兴趣的文章
【设计模式系列】结构型模式之Composite模式
查看>>
PHP常量详解:define和const的区别
查看>>
ORA-04098 trigger 'DBBJ.DB_EV_ALTER_ST_METADATA' is invalid and failed re-validation
查看>>
Spring学习总结(四)——表达式语言 Spring Expression Language
查看>>
使用Notepad++的XML Tools插件格式化XML文件
查看>>
几种最常见的广域网
查看>>
java--Serializable理解与总结
查看>>
C语言工具:LCC-Win32+v3.0
查看>>
blog首页视图
查看>>
es6记录
查看>>
H5中新增加的一些标签
查看>>
数组和指针
查看>>
1113: 零起点学算法20——输出特殊值II
查看>>
素数判定
查看>>
P4279 [SHOI2008]小约翰的游戏
查看>>
P5163 WD与地图(整体二分+权值线段树)
查看>>
函数里面定义函数
查看>>
iphone-common-codes-ccteam源代码 CCTime.m
查看>>
第一章 docker 镜像,容器,仓库基本命令(三)
查看>>
AppImage格式安装包使用
查看>>